Inactivation of the Parietal Reach Region Causes Optic Ataxia, Impairing Reaches but Not Saccades
نویسندگان
چکیده
Lesions in human posterior parietal cortex can cause optic ataxia (OA), in which reaches but not saccades to visual objects are impaired, suggesting separate visuomotor pathways for the two effectors. In monkeys, one potentially crucial area for reach control is the parietal reach region (PRR), in which neurons respond preferentially during reach planning as compared to saccade planning. However, direct causal evidence linking the monkey PRR to the deficits observed in OA is missing. We thus inactivated part of the macaque PRR, in the medial wall of the intraparietal sulcus, and produced the hallmarks of OA, misreaching for peripheral targets but unimpaired saccades. Furthermore, reach errors were larger for the targets preferred by the neural population local to the injection site. These results demonstrate that PRR is causally involved in reach-specific visuomotor pathways, and reach goal disruption in PRR can be a neural basis of OA.
منابع مشابه
Optic Ataxia: From Balint’s Syndrome to the Parietal Reach Region
Optic ataxia is a high-order deficit in reaching to visual goals that occurs with posterior parietal cortex (PPC) lesions. It is a component of Balint's syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching in the contralesional visual field, difficulty preshaping the hand for grasping, and an inability to correct reaches online. Recent research in ...
متن کاملInactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.
UNLABELLED The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversi...
متن کاملImpairment of online control of hand and eye movements in a monkey model of optic ataxia.
The parietal mechanisms for online control of hand trajectory were studied by combining single-cell recording and reversible inactivation of superior parietal area 5 (PE/PEc; SPL) of monkeys while these made reaches and saccades to visual targets, when the target position changed unexpectedly. Neural activity was modulated by hand position, speed, and movement direction, and by pre- and/or post...
متن کاملA hand and a field effect in on-line motor control in unilateral optic ataxia.
Patients with bilateral optic ataxia fail to show rapid perturbation-induced corrections during manual aiming movements. Based on this, it has been proposed that this pathology results from a disruption of processes of on-line motor control in the posterior parietal cortex (PPC). Here, we show that on-line motor control performance in a patient with unilateral optic ataxia is similar to that of...
متن کاملOnly Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching
Here, we report that temporally patterned, coherent spiking activity in the posterior parietal cortex (PPC) coordinates the timing of looking and reaching. Using a spike-field approach, we identify a population of parietal area LIP neurons that fire spikes coherently with 15 Hz beta-frequency LFP activity. The firing rate of coherently active neurons predicts the reaction times (RTs) of coordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 76 شماره
صفحات -
تاریخ انتشار 2012